Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Rep ; 43(2): 113810, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377004

RESUMO

Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.


Assuntos
Neoplasias Colorretais , Proteogenômica , Humanos , Proteoma , Proteômica , Genômica , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade Classe II , Hipóxia , Microambiente Tumoral
2.
Front Oncol ; 12: 802548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692787

RESUMO

Colorectal adenocarcinomas arise from luminal lining epithelium of the colorectal tract which is covered with highly glycosylated mucins. Mucin O-glycosylation is initiated by a family of polypeptide N-acteylgalactosaminyltransferases (GALNTs). This study examined GALNT6 protein expression in 679 colorectal tumors, including 574 early-stage and 105 late-stage cancers. GALNT6 expression in cancer tissue varied widely between patients ranging from high levels to complete loss. Loss of GALNT6 occurred in 9.9% of early-stage and 15.2% of late-stage cancers and was more prevalent in grade 3 or MSI subtype tumors. Survival analyses revealed that loss of GALNT6 expression is prognostic of reduced overall survival, and univariate and multivariate analyses demonstrated that loss of GALNT6 is an independent risk variable. We also analyzed 508-case TCGA and 63-case CPTAC colorectal cancer cohorts for all members of the GALNT enzyme family, the mucin family, as well as KRAS and BRAF mutations. GLANT6 mRNA expression showed no strong correlation with other GALNTs or mucins but was significantly higher in KRAS mutated or BRAF wild-type early-stage cancers. Using large cohorts of patients and different approaches, this study shows that loss of GALNT6 enzyme in early-stage colorectal cancer predicts poor clinical outcomes.

3.
Front Immunol ; 13: 831849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401574

RESUMO

COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence: An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.


Assuntos
COVID-19 , Autoantígenos , Dermatan Sulfato , Humanos , Pulmão/metabolismo , Proteínas , RNA , SARS-CoV-2
4.
J Transl Autoimmun ; 5: 100147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237749

RESUMO

Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare adverse effects of the currently available mRNA and viral vector-based COVID vaccines.

5.
Sci Rep ; 12(1): 2767, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177765

RESUMO

In a quest for prognostic biomarkers in early-stage colorectal cancer, we investigated NNMT (nicotinamide N-methyltransferase) in large cohorts of patients. Immunohistochemical examination of 679 patients illustrates that NNMT protein is predominantly expressed in the cancer stroma at varying levels, and about 20% of cancer tissues overexpress NNMT when compared to levels observed in normal colorectal mucosa. Clinical correlation analyses of 572 patients with early-stage cancers reveal that NNMT protein overexpression is significantly associated with shorter overall and disease-free survival, but no such correlation is found in late-stage colorectal cancer. Analyses of TCGA and CPTAC colorectal cancer cohorts show that NNMT mRNA expression is positively correlated with protein levels, is significantly higher in CIMP-high or MSI subtypes than in CIMP-low or MSS subtypes, and is positively correlated with its paralog INMT but not with its interaction partners such as PNMT, ADK, APP, ATF6, BMF, BRD4, CDC37, or CRYZ. In early-stage cancers, NNMT expression is higher in BRAF-mutated than in BRAF wild type tumors but is not affected by KRAS or PIK3CA mutation status. As a cancer stromal protein with important roles in metabolism and cancer epigenetics, NNMT is emerging as a promising biomarker for risk stratification of early-stage cancers.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias Colorretais , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Nicotinamida N-Metiltransferase/biossíntese , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Estudos Retrospectivos , Taxa de Sobrevida
6.
bioRxiv ; 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34729561

RESUMO

In order to understand autoimmune phenomena contributing to the pathophysiology of COVID-19 and post-COVID syndrome, we have been profiling autoantigens (autoAgs) from various cell types. Although cells share numerous autoAgs, each cell type gives rise to unique COVID-altered autoAg candidates, which may explain the wide range of symptoms experienced by patients with autoimmune sequelae of SARS-CoV-2 infection. Based on the unifying property of affinity between autoantigens (autoAgs) and the glycosaminoglycan dermatan sulfate (DS), this paper reports 140 candidate autoAgs identified from proteome extracts of human Jurkat T-cells, of which at least 105 (75%) are known targets of autoantibodies. Comparison with currently available multi-omic COVID-19 data shows that 125 (89%) of DS-affinity proteins are altered at protein and/or RNA levels in SARS-CoV-2-infected cells or patients, with at least 94 being known autoAgs in a wide spectrum of autoimmune diseases and cancer. Protein alterations by ubiquitination and phosphorylation in the viral infection are major contributors of autoAgs. The autoAg protein network is significantly associated with cellular response to stress, apoptosis, RNA metabolism, mRNA processing and translation, protein folding and processing, chromosome organization, cell cycle, and muscle contraction. The autoAgs include clusters of histones, CCT/TriC chaperonin, DNA replication licensing factors, proteasome and ribosome proteins, heat shock proteins, serine/arginine-rich splicing factors, 14-3-3 proteins, and cytoskeletal proteins. AutoAgs such as LCP1 and NACA that are altered in the T cells of COVID patients may provide insight into T-cell responses in the viral infection and merit further study. The autoantigen-ome from this study contributes to a comprehensive molecular map for investigating acute, subacute, and chronic autoimmune disorders caused by SARS-CoV-2.

7.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710063

RESUMO

Acute COVID-19, caused by SARS-CoV-2, is characterized by diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, and often associated with varied longer-term sequelae. Over the past 18 months, it has become apparent that inappropriate immune responses contribute to the pathogenesis of severe COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently gathered at an American Autoimmune Related Diseases Association Noel R. Rose Colloquium to address the current state of knowledge regarding two important questions: Does established autoimmunity predispose to severe COVID-19? And, at the same time, can SARS-CoV-2 infection trigger de novo autoimmunity? Indeed, work to date has demonstrated that 10% to 15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I interferons, suggesting that preexisting autoimmunity underlies severe disease in some patients. Other studies have identified functional autoantibodies following infection with SARS-CoV-2, such as those that promote thrombosis or antagonize cytokine signaling. These autoantibodies may arise from a predominantly extrafollicular B cell response that is more prone to generating autoantibody-secreting B cells. This Review highlights the current understanding, evolving concepts, and unanswered questions provided by this unique opportunity to determine mechanisms by which a viral infection can be exacerbated by, and even trigger, autoimmunity. The potential role of autoimmunity in post-acute sequelae of COVID-19 is also discussed.


Assuntos
Autoanticorpos/química , Autoimunidade/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Transdução de Sinais , Animais , Doenças Autoimunes , Linfócitos B/citologia , Citocinas/metabolismo , Progressão da Doença , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , Masculino , Camundongos , Fosfolipídeos/metabolismo , SARS-CoV-2
8.
bioRxiv ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34373855

RESUMO

Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.

9.
Front Immunol ; 12: 680212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113352

RESUMO

Dermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.


Assuntos
Dermatan Sulfato/farmacologia , Proteínas de Choque Térmico/metabolismo , Cadeias Pesadas de Imunoglobulinas/imunologia , Fatores Imunológicos/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Fatores de Transcrição TFII/metabolismo , Apoptose , Proliferação de Células , Chaperona BiP do Retículo Endoplasmático , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica
10.
J Autoimmun ; 120: 102644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971585

RESUMO

We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into "long COVID" and related autoimmune sequelae.


Assuntos
Autoantígenos/imunologia , Autoimunidade , COVID-19/imunologia , Pulmão/imunologia , SARS-CoV-2/fisiologia , Transdução de Sinais/imunologia , Replicação Viral/imunologia , Células A549 , COVID-19/patologia , Humanos , Pulmão/patologia , Pulmão/virologia
11.
bioRxiv ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851168

RESUMO

To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs. These proteins are associated with gene expression, mRNA processing, mRNA splicing, translation, protein folding, vesicles, and chromosome organization. Numerous nuclear autoAgs were identified, including both classical ANAs and ENAs of systemic autoimmune diseases and unique autoAgs involved in the DNA replication fork, mitotic cell cycle, or telomerase maintenance. We also identified many uncommon autoAgs involved in nucleic acid and peptide biosynthesis and nucleocytoplasmic transport, such as aminoacyl-tRNA synthetases. In addition, this study found autoAgs that potentially interact with multiple SARS-CoV-2 Nsp and Orf components, including CCT/TriC chaperonin, insulin degrading enzyme, platelet-activating factor acetylhydrolase, and the ezrin-moesin-radixin family. Furthermore, B-cell-specific IgM-associated ER complex (including MBZ1, BiP, heat shock proteins, and protein disulfide-isomerases) is enriched by DS-affinity and up-regulated in B-cells of COVID-19 patients, and a similar IgH-associated ER complex was also identified in autoreactive pre-B1 cells in our previous study, which suggests a role of autoreactive B1 cells in COVID-19 that merits further investigation. In summary, this study demonstrates that virally infected cells are characterized by alterations of proteins with propensity to become autoAgs, thereby providing a possible explanation for infection-induced autoimmunity. The COVID autoantigen-ome provides a valuable molecular resource and map for investigation of COVID-related autoimmune sequelae and considerations for vaccine design.

13.
bioRxiv ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33655248

RESUMO

We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.

14.
bioRxiv ; 2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33501444

RESUMO

COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.

15.
Sci Rep ; 10(1): 22085, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328538

RESUMO

DEAD-box RNA helicase DDX21 (also named nucleolar RNA helicase 2) is a nuclear autoantigen with undefined roles in cancer. To explore possible roles of autoimmune recognition in cancer immunity, we examined DDX21 protein expression in colorectal cancer tissue and its association with patient clinical outcomes. Unbiased deep proteomic profiling of two independent colorectal cancer cohorts using mass spectrometry showed that DDX21 protein was significantly upregulated in cancer relative to benign mucosa. We then examined DDX21 protein expression in a validation group of 710 patients, 619 of whom with early stage and 91 with late stage colorectal cancers. DDX21 was detected mostly in the tumor cell nuclei, with high expression in some mitotic cells. High levels of DDX21 protein were found in 28% of stage I, 21% of stage II, 30% of stage III, and 32% of stage IV colorectal cancer cases. DDX21 expression levels correlated with non-mucinous histology in early stage cancers but not with other clinicopathological features such as patient gender, age, tumor location, tumor grade, or mismatch repair status in any cancer stage. Kaplan-Meier analyses revealed that high DDX21 protein levels was associated with longer survival in patients with early stage colorectal cancer, especially longer disease-free survival in patients with microsatellite instability (MSI) cancers, but no such correlations were found for the microsatellite stable subtype or late stage colorectal cancer. Univariate and multivariate analyses also identified high DDX21 protein expression as an independent favorable prognostic marker for early stage MSI colorectal cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , RNA Helicases DEAD-box/genética , Instabilidade de Microssatélites , Idoso , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico
16.
Clin Proteomics ; 17: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973414

RESUMO

BACKGROUND: Autoantibodies are a hallmark of autoimmune diseases. Autoantibody screening by indirect immunofluorescence staining of HEp-2 cells with patient sera is a current standard in clinical practice. Differential diagnosis of autoimmune disorders is based on commonly recognizable nuclear and cytoplasmic staining patterns. In this study, we attempted to identify as many autoantigens as possible from HEp-2 cells using a unique proteomic DS-affinity enrichment strategy. METHODS: HEp-2 cells were cultured and lysed. Total proteins were extracted from cell lysate and fractionated with DS-Sepharose resins. Proteins were eluted with salt gradients, and fractions with low to high affinity were collected and sequenced by mass spectrometry. Literature text mining was conducted to verify the autoantigenicity of each protein. Protein interaction network and pathway analyses were performed on all identified proteins. RESULTS: This study identified 107 proteins from fractions with low to high DS-affinity. Of these, 78 are verified autoantigens with previous reports as targets of autoantibodies, whereas 29 might be potential autoantigens yet to be verified. Among the 107 proteins, 82 can be located to nucleus and 15 to the mitotic cell cycle, which may correspond to the dominance of nuclear and mitotic staining patterns in HEp-2 test. There are 55 vesicle-associated proteins and 12 ribonucleoprotein granule proteins, which may contribute to the diverse speckled patterns in HEp-2 stains. There are also 32 proteins related to the cytoskeleton. Protein network analysis indicates that these proteins have significantly more interactions among themselves than would be expected of a random set, with the top 3 networks being mRNA metabolic process regulation, apoptosis, and DNA conformation change. CONCLUSIONS: This study provides a proteomic repertoire of confirmed and potential autoantigens for future studies, and the findings are consistent with a mechanism for autoantigenicity: how self-molecules may form molecular complexes with DS to elicit autoimmunity. Our data contribute to the molecular etiology of autoimmunity and may deepen our understanding of autoimmune diseases.

17.
J Clin Oncol ; 38(31): 3638-3651, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897827

RESUMO

PURPOSE: The purpose of this study was to evaluate the prognostic value of Immunoscore in patients with stage III colon cancer (CC) and to analyze its association with the effect of chemotherapy on time to recurrence (TTR). METHODS: An international study led by the Society for Immunotherapy of Cancer evaluated the predefined consensus Immunoscore in 763 patients with American Joint Committee on Cancer/Union for International Cancer Control TNM stage III CC from cohort 1 (Canada/United States) and cohort 2 (Europe/Asia). CD3+ and cytotoxic CD8+ T lymphocyte densities were quantified in the tumor and invasive margin by digital pathology. The primary end point was TTR. Secondary end points were overall survival (OS), disease-free survival (DFS), prognosis in microsatellite stable (MSS) status, and predictive value of efficacy of chemotherapy. RESULTS: Patients with a high Immunoscore presented with the lowest risk of recurrence, in both cohorts. Recurrence-free rates at 3 years were 56.9% (95% CI, 50.3% to 64.4%), 65.9% (95% CI, 60.8% to 71.4%), and 76.4% (95% CI, 69.3% to 84.3%) in patients with low, intermediate, and high immunoscores, respectively (hazard ratio [HR; high v low], 0.48; 95% CI, 0.32 to 0.71; P = .0003). Patients with high Immunoscore showed significant association with prolonged TTR, OS, and DFS (all P < .001). In Cox multivariable analysis stratified by participating center, Immunoscore association with TTR was independent (HR [high v low], 0.41; 95% CI, 0.25 to 0.67; P = .0003) of patient's sex, T stage, N stage, sidedness, and microsatellite instability status. Significant association of a high Immunoscore with prolonged TTR was also found among MSS patients (HR [high v low], 0.36; 95% CI, 0.21 to 0.62; P = .0003). Immunoscore had the strongest contribution χ2 proportion for influencing survival (TTR and OS). Chemotherapy was significantly associated with survival in the high-Immunoscore group for both low-risk (HR [chemotherapy v no chemotherapy], 0.42; 95% CI, 0.25 to 0.71; P = .0011) and high-risk (HR [chemotherapy v no chemotherapy], 0.5; 95% CI, 0.33 to 0.77; P = .0015) patients, in contrast to the low-Immunoscore group (P > .12). CONCLUSION: This study shows that a high Immunoscore significantly associated with prolonged survival in stage III CC. Our findings suggest that patients with a high Immunoscore will benefit the most from chemotherapy in terms of recurrence risk.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Recidiva Local de Neoplasia/imunologia , Idoso , Idoso de 80 Anos ou mais , Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimioterapia Adjuvante , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Intervalo Livre de Doença , Feminino , Humanos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Taxa de Sobrevida , Fatores de Tempo
18.
Transl Oncol ; 13(11): 100836, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739842

RESUMO

Focal adhesion kinase (FAK) is a key tyrosine kinase downstream of c-MET (or hepatocyte growth factor receptor, HGFR) and MST1R (macrophage-stimulating protein receptor or recepteur d'origine Nantais, RON) membrane receptors. The pathway plays an important role in cancer survival and invasion. In this study, we examined the protein expression of FAK, c-MET, and MST1R levels in a well-annotated cohort of 330 colorectal cancer patients. We found FAK to be overexpressed in colorectal adenocarcinomas (p = 0.0002), and FAK levels correlated positively with phospho-FAK levels (R2 = 0.81). In comparison, MST1R levels were not significantly different, and c-MET levels were slightly higher in the normal samples. We then developed a combined 3-protein panel of FAK, c-MET, and MST1R expression signatures that can robustly risk-stratify colorectal cancer across all stages into three clusters that differ in progression-free survival. The colorectal cancer subgroup with high FAK, low c-MET, and low MST1R protein levels showed the worst progression-free survival with particularly early progression of disease (p = 0.0053). Combined FAK, c-MET, and MST1R were independently prognostic for progression-free survival in stage II colorectal cancers in a multivariate model. The 3-protein panel provides a potentially clinically attractive method for risk-stratification and adjuvant therapy guidance, especially in stage II disease.

19.
Front Med (Lausanne) ; 7: 401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850906

RESUMO

Using unbiased proteomics, we had previously discovered that the catalytic proteasome subunit ß type 7 (PSB7) protein is frequently overexpressed in colorectal adenocarcinomas. In this paper, we validate this finding and derive a prognostic significance for PSB7 by examining an expanded, well-annotated clinical cohort of 318 colorectal cancer patients. We found PSB7 protein levels to be similarly increased in both advanced stage primary disease and metastatic lesions. We then examined the prognostic value of PSB7 protein expression. Elevated PSB7 protein as well as PSMB7 mRNA levels showed associations with lower overall survival, particularly in female patients. The prognostic value of elevated PSB7 protein levels was highest for female patients who were older (>60 years of age at diagnosis) or who had received adjuvant chemotherapy. While high PSB7 did not retain its prognostic significance on multivariate analysis, we discuss the potential significance of PSB7 as a biomarker, considering its differential prognostic strength in different colorectal cancer patient groups and given its role as a subunit of the immunoproteasome for antigen presentation.

20.
Front Oncol ; 10: 945, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587829

RESUMO

Colorectal cancers are among the most common cancers and a leading cause of cancer death. In our pursuit to discover molecular markers for better characterization and precision theranostics of these cancers, we first conducted global deep proteome analyses and identified maspin (serpin B5, peptidase inhibitor 5) as an upregulated protein in tumor tissue. We then validated its expression in a large cohort of 743 patients with colorectal cancers of all stages and found that both cytoplasmic and nuclear expression varied widely between different patients. Comparison with clinicopathological features revealed that maspin expression levels correlate significantly only with mismatch repair (MMR) status but not with other features. To elucidate the prognostic significance of maspin, we analyzed two outcome-annotated cohorts, one of 572 early stage cancer patients and another of 93 late stage cancer patients. Kaplan-Meier survival, univariate, and multivariate analyses revealed that maspin overexpression predicts longer overall and disease-free survival for early stage microsatellite instability (MSI) subtype colorectal cancer, but there is no correlation with survival for patients with early stage cancer of the microsatellite stability (MSS) subtype or late stage cancer. Our study identifies maspin expression as an independent prognostic marker for risk stratification of early stage MSI subtype colorectal cancer and may provide guidance for improved therapeutic management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...